Diffusion Processes Satisfying a Conservation Law Constraint

نویسندگان

  • J. R. Ristorcelli
  • Nikolai Leonenko
چکیده

We investigate coupled stochastic differential equations governing N nonnegative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires a set of fluctuating variables to be nonnegative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the nonnegativity and the unit-sum conservation law constraints are satisfied as the variables evolve in time. We investigate the consequences of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first fourmoments of the probability density function.We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The conservation law is a parabolic reaction-convection-diffusion equation with a small parameter multiplying the diffusion term and convex flux. Rigorous upper and lower bounding functions for the solution of the conservation law

The size of the shock-layer governed by a conservation law is studied. The conservation law is a parabolic reaction-convection-diffusion equation with a small parameter multiplying the diffusion term and convex flux. Rigorous upper and lower bounding functions for the solution of the conservation law are established based on maximum-principle arguments. The bounding functions demonstrate that t...

متن کامل

Correlation functions, Bell’s inequalities and the fundamental conservation laws

I derive the correlation function for a general theory of two-valued spin variables that satisfy the fundamental conservation law of angular momentum. The unique theory-independent correlation function is identical to the quantum mechanical correlation function. I prove that any theory of correlations of such discrete variables satisfying the fundamental conservation law of angular momentum vio...

متن کامل

Convergence of a Shock-Capturing Streamline Diffusion Finite Element Method for a Scalar Conservation Law in Two Space Dimensions

We prove a convergence result for a shock-capturing streamline diffusion finite element method applied to a time-dependent scalar nonlinear hyperbolic conservation law in two space dimensions. The proof is based on a uniqueness result for measure-valued solutions by DiPerna. We also prove an almost optimal error estimate for a linearized conservation law having a smooth exact solution.

متن کامل

On the Convergence of a Finite Element Method for a Nonlinear Hyperbolic Conservation Law

We consider a space-time finite element discretization of a time-dependent nonlinear hyperbolic conservation law in one space dimension (Burgers' equation). The finite element method is higher-order accurate and is a Petrov-Galerkin method based on the so-called streamline diffusion modification of the test functions giving added stability. We first prove that if a sequence of finite element so...

متن کامل

A Finite Element, Multiresolution Viscosity Method for Hyperbolic Conservation Laws

It is well known that the classic Galerkin finite element method is unstable when applied to hyperbolic conservation laws such as the Euler equations for compressible flow. It is also well known that naively adding artificial diffusion to the equations stabilizes the method but sacrifices too much accuracy to be of any practical use. An elegant approach, referred to as spectral viscosity method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014